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The six-electron transition state controlling the fluxional behavior of bridged homotropili- 

dines (I), renders these substances suitable for the study of a novel type of nonclassical "aroma- 

ticity", i.e., one materializing as a result of rapid molecular flux. And while this intriguing 

possibility has yet to materialize in the laboratory, recent theoretical examination of the problem 

by EHZ or MINW/23 calculation has revealed that the desired inequality, E(B)<E(A) or E(A'), might 

well be realizable with a properly perturbed semibullvalene (&), specifically one whose electron 

density is reduced at the potentially "aromatic" Ca segment and enhanced at the bridgeheads, i.e., 

C(1) and C(5). 

la; X=NH 

b; x= NCN 
c;x=s 
d;x=s02 

e;x= - 

f; X=CH* 

g; x=c=o 

h; X=&OH 
i; X=CH=CH 

j; x=c%-c% 

The recent synthesis of the 9-this'- and 9-azabarbaralane5 frames in these laboratories coupled 

with our active interest in the concept of heteroaromaticity6 prompted us to examine the possible 

influence that heteroatomic bridging might have on the rate of homotropilidine interconversion,i.e., 

A=A'. To this end, we studied azabarbaralanes b' and u5 and thiabarbaralanes &? and Ma by 

variable-temperature (vt) pmr spectroscopy and are now in position to describe and rationalize our 
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findings along these lines. 

I Pertinent activation constants for the "Cope" interconversion (A=A') of 9-heterobarbaralanes 

la-ld are given in the Table.g -- It is noted that the thia analogs & and &$ are associated with 

AG+(T,) terms which are invariably 2-2.5 kcal./mol. higher than those of their aza counterparts 

and, further, that the rate of flux remains essentially invariant within each bridge group despite 

of major variations in lone-pair availability, (effective electronegativity) on passing from NH to 

NCN and from S to SO=. The rate of the A to A' interconversion is thus seen not to respond to the 

electronic demands imposed by the bridging heteroatom but rather to its size. In other words, the 

heteroatom in each la-ld appears to operate in the capacity of a relatively inert bridging unit -- 

whose size is reflected primarily in the separation between C(1) and C(5), estimated ('Welding" 

molecular models) at 2.50 8. in hand &and 2.75-2.80 w in &and g. 

Table g Activation Constants for Homotropilidine Interconversion in Heterobarbaralanes 
L la,&,&, and=. 

b b 

Bridge(X) _ 
*G+(Tc)b 

L log A L- AStb 

NH -110 + 5" 7.2 + 0.2 

NCN -110 + 5" 7.2 + 0.2 13.9 + 0.6 8.6 5 1.3 8.2 2 1.3 +6 

S - 60 + 5" 9.7 + 0.3 13.1 + 0.4 9.7 + 0.6 10.3 + 0.7 +3 

soa - 55 + 5" 9.5 + 0.3 12.5 + 0.4 8.9 + 0.6 9.4 2 0.6 -0 

(a) "C, (b) kcal./mol., (c) eu 

Interestingly, the situation encountered here with the heterobarbaralanes, i.e., the inverse rela- 

tionship between rate of A to A' interconversion and C(l)-C(5) separation, parallels that noted pre- 

viouslylo*ll for the hydrocarbon analogs where the rate of molecular flux increases in the order 

li<lf<le =--' In fact, it is significant to note that by combining the information collected on certain 

representative members of both types of bridged homotropilidine one finds good linear correlation 

between AH+" and r[C(l)-C(5)]. This is depicted in Figure 113 and serves, we believe, as a strong 

indication that the crucial energy difference between ground state (A or A') and activated complex 

(6) in a 1,5_bridgedbnsubstituted) homotropilidine is chiefly a function of the C(1) to C(5) inter- 

nuclear separation, showing little if any dependence on the electronic demands of the bridging unit. 

Moreover, judging from the fact that barbaralone15 (b; AH+ = 9.6 kcal./mol.)"a shows the greatest 

deviation (ca. 8%) from the plot of Figure 1, and to the extent that the activation barrier of its - 
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protonated form has been correctly estimated to 

elude that the bridging unit will exert maximal 
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be in excess of 13.8 kcal./mol.,l'" we must con- 

influence on the rate of the "Cope" process when en- 

dowed with strong a-acceptor character. Possibly, the validity of the observed linear correlation 

is most convincingly demonstrated by its correct reproduction (within ~a. 5%!) of the experimental 

\Ht(4.8 kcal./mol.)16 for the "Cope" process in semibullvalene (.&), in spite of the major concen- 

tration of data points in an entirely different region of r[C(l)-C(5)], a, 2.5-3.0 8. Note also, 

that at AH' '0.U the energy turning point between classical [E(A)<E(B)] and "aromatic" 

[E(B)<E(A)I character, the line intercepts the abscissa at the unrealistically short distance of 

0.32 !, a fact which serves to further stress the physical impossibility of attaining "u+T-aroma- 

ticity" with an unperturbed bridged homotropilidine. 
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Figure 1'" Plot of experimentally determined AH+ values (0) for the degenerate rearrangement 
of bridged homotropilidines (a, vs. C(l)-C(5) internuclear separation. 
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